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The specific objective of this lesson is to conduct a brief review 
of the fundamentals of fluid flow and present: 

 
1. A general equation for conservation of mass and specific equations for steady 

and incompressible flows 
2. A general equation for conservation of momentum in integral form and 

discuss simplifications  
3. Bernoulli equation and introduce the concepts of total, static and velocity 

pressures 
4. Modified Bernoulli equation and introduce expression for head loss and 

fan/pump power 
5. Methods for evaluating friction pressure drops with suitable correlations for 

friction factor 
6. The concept of minor losses 

 
At the end of the lesson, the student should be able to: 
 

1. Write the general equation of mass transfer and be able to reduce it for 
incompressible and steady flows 

2. Write the general equation of momentum transfer and reduce it to 
incompressible, steady flows 

3. Apply equations of conservation of mass and momentum to simple problems 
4. Write Bernoulli equation and define static, velocity and datum pressures and 

heads 
5. Write modified Bernoulli equation to account for frictional losses and 

presence of fan/pump 
6. Apply Bernoulli and modified Bernoulli equations to simple fluid flow 

problems relevant to refrigeration and air conditioning 
7. Estimate friction pressure drops and minor losses 

 
 
6.1. Fluid flow 
 
In refrigeration and air-conditioning systems various fluids such as air, water and 
refrigerants flow through pipes and ducts. The flow of these fluids is subjected to 
certain fundamental laws. The subject of “Fluid Mechanics” deals with these aspects. 
In the present lesson, fundamentals of fluid flow relevant to refrigeration and air 
conditioning is discussed. Fluid flow in general can be compressible, i.e., the density 
of the fluid may vary along the flow direction. However in most of the refrigeration 
and air conditioning applications the density variations may be assumed to be 
negligible. Hence, the fluid flow for such systems is treated as incompressible. This 
assumption simplifies the fluid flow problem considerably. This assumption is valid 
as long as the velocity fluid is considerably less than the velocity of sound (Mach 
number, ratio of fluid velocity to sonic velocity less than 0.3). To analyze the fluid 
flow problems, in addition to energy conservation (1st law of thermodynamics), one 
has to consider the conservation of mass and momentum. 
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6.1.1. Conservation of mass: 
 
As the name implies, this law states that mass is a conserved parameter, i.e., it can 
neither be generated nor destroyed; it can only be transferred. Mathematically, the 
equation of conservation of mass for a control volume is given by: 
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The first term on the left represents the rate of change of mass within the control 
volume, while the second term represents the net rate of mass flux through the control 
surface. The above equation is also known as continuity equation. 
 
In most of the refrigeration and air conditioning systems, the fluid flow is usually 
steady, i.e., the mass of the control volume does not change with time. For such a 
steady flow process, Eq. (6.1)  becomes: 
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If we apply the above steady flow equation to a duct shown in Fig. 6.1, we obtain: 
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Fig. 6.1. Steady fluid flow through a duct 

 
.

2
.

2221111
.

mmVAVAm ==ρ=ρ=                            (6.3) 

where 
.

m is the mass flow rate of fluid through the control volume, ρ, A and V are 
the density, cross sectional area and velocity of the fluid respectively. 
 
If we assume that the flow is incompressible (ρ1 = ρ2 = ρ), then the above equation 
reduces to:  

2211 VAVA =                                   (6.4) 
 
The above equation implies that when A1 > A2, then V1 < V2, that is velocity increases 
in the direction of flow. Such a section is called a nozzle. On the other hand, if A1 < 
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A2, then V1 > V2 and velocity reduces in the direction of flow, this type of section is 
called as diffuser.  
 
 
6.1.2. Conservation of momentum: 
 
The momentum equation is mathematical expression for the Newton’s second law 
applied to a control volume. Newton’s second law for fluid flow relative to an inertial 
coordinate system (control volume) is given as: 
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In the above equation, 
volumecontrol

dt
Pd
⎟⎟
⎠

⎞
is the rate of change of linear momentum of the 

control volume, volumecontrolon)F is the summation of all the forces acting on the 

control volume,  are the net surface and body forces acting on the 

control volume, is the velocity vector with reference to the control volume and v is 
the velocity (momentum per unit mass) with reference to an inertial (non-
accelerating) reference frame. When the control volume is not accelerating (i.e., when 
it is stationary or moving with a constant velocity), then V

∑∑ BS FandF

V

and v refer to the same 
reference plane. 
 
The above equation states that the sum of all forces (surface and body) acting on a 
non accelerating control volume is equal to the sum of the rate of change of 
momentum inside the control volume and the net rate of flux of momentum out 
through the control surface. For steady state the linear momentum equation reduces 
to: 

statesteadyforAdVVFFF
CSBS ∫ •=+= ρ                       (6.6) 

 
The surface forces consist of all the forces transmitted across the control surface and 
may include pressure forces, force exerted by the physical boundary on the control 
surface etc. The most common body force encountered in most of the fluid flow 
problems is the gravity force acting on the mass inside the control volume. 
 
The linear momentum equation discussed above is very useful in the solution of many 
fluid flow problems. Some of the applications of this equation are: force exerted by 
the fluid flow on nozzles, bends in a pipe, motion of rockets, water hammers etc. 
Example shows the application of linear momentum equation. 
 
The moment-of-momentum equation is the equation of conservation of angular 
momentum. It states that the net moment applied to a system is equal to the rate of 
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change of angular momentum of the system. This equation is applied for hydraulic 
machines such as pumps, turbines, compressors etc. 
 
 
6.1.3. Bernoulli’s equation: 
 
The Bernoulli’s equation is one of the most useful equations that is applied in a wide 
variety of fluid flow related problems. This equation can be derived in different ways, 
e.g. by integrating Euler’s equation along a streamline, by applying first and second 
laws of thermodynamics to steady, irrotational, inviscid and incompressible flows etc. 
In simple form the Bernoulli’s equation relates the pressure, velocity and elevation 
between any two points in the flow field. It is a scalar equation and is given by: 
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Each term in the above equation has dimensions of length (i.e., meters in SI units) 
hence these terms are called as pressure head, velocity head, static head and total 
heads respectively. Bernoulli’s equation can also be written in terms of pressures (i.e., 
Pascals in SI units) as: 
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Bernoulli’s equation is valid between any two points in the flow field when the flow 
is steady, irrotational, inviscid and incompressible. The equation is valid along a 
streamline for rotational, steady and incompressible flows. Between any two points 1 
and 2 in the flow field for irrotational flows, the Bernoulli’s equation is written as: 
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Bernoulli’s equation can also be considered to be an alternate statement of 
conservation of energy (1st law of thermodynamics). The equation also implies the 
possibility of conversion of one form of pressure into other. For example, neglecting 
the pressure changes due to datum, it can be concluded from Bernoulli’s equation that 
the static pressure rises in the direction of flow in a diffuser while it drops in the 
direction of flow in case of nozzle due to conversion of velocity pressure into static 
pressure and vice versa. Figure 6.2 shows the variation of total, static and velocity 
pressure for steady, incompressible and inviscid, fluid flow through a pipe of uniform 
cross-section. 
 
Since all real fluids have finite viscosity, i.e. in all actual fluid flows, some energy 
will be lost in overcoming friction. This is referred to as head loss, i.e. if the fluid 

Version 1 ME, IIT Kharagpur 



 

were to rise in a vertical pipe it will rise to a lower height than predicted by 
Bernoulli’s equation. The head loss will cause the pressure to decrease in the flow 
direction. If the head loss is denoted by Hl, then Bernoulli’s equation can be modified 
to: 
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Figure 6.2 shows the variation of total, static and velocity pressure for steady, 
incompressible fluid flow through a pipe of uniform cross-section without viscous 
effects (solid line) and with viscous effects (dashed lines). 
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Fig. 6.2. Application of Bernoulli equation to pipe flow 

 
Since the total pressure reduces in the direction of flow, sometimes it becomes 
necessary to use a pump or a fan to maintain the fluid flow as shown in Fig. 6.3. 
 
 
 
 
 
 

 
 
 
 

1 2 

Fan 

 
Fig. 6.3. Air flow through a duct with a fan 

 
 

Energy is added to the fluid when fan or pump is used in the fluid flow conduit (Fig. 
6.3), then the modified Bernoulli equation is written as: 
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where Hp is the gain in head due to fan or pump and Hl is the loss in head due to 
friction. When fan or pump is used, the power required (W) to drive the fan/pump is 
given by: 
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where 
.

m is the mass flow rate of the fluid and ηfan is the energy efficiency of the 
fan/pump. Some of the terms in the above equation can be negligibly small, for 
example, for air flow the potential energy term g(z1-z2) is quite small compared to the 
other terms. For liquids, the kinetic energy term (v2

2-v1
2)/2 is relatively small. If there 

is no fan or pump then W is zero. 
 
 
6.1.4. Pressure loss during fluid flow: 
 
The loss in pressure during fluid flow is due to: 

 
a) Fluid friction and turbulence 
b) Change in fluid flow cross sectional area, and 
c) Abrupt change in the fluid flow direction 

 
Normally pressure drop due to fluid friction is called as major loss or frictional 
pressure drop Δpf and pressure drop due to change in flow area and direction is called 
as minor loss Δpm. The total pressure drop is the summation of frictional pressure 
drop and minor loss. In most of the situations, the temperature of the fluid does not 
change appreciably along the flow direction due to pressure drop. This is due to the 
fact that the temperature tends to rise due to energy dissipation by fluid friction and 
turbulence, at the same time temperature tends to drop due to pressure drop. These 
two opposing effects more or less cancel each other and hence the temperature 
remains almost constant (assuming no heat transfer to or from the surroundings). 
 

Evaluation of frictional pressure drop: 
 
When a fluid flows through a pipe or a duct, the relative velocity of the fluid at the 
wall of the pipe/duct will be zero, and this condition is known as a no-slip condition. 
The no-slip condition is met in most of the common fluid flow problems (however, 
there are special circumstances under which the no-slip condition is not satisfied). As 
a result of this a velocity gradient develops inside the pipe/duct beginning with zero at 
the wall to a maximum, normally at the axis of the conduit. The velocity profile at any 
cross section depends on several factors such as the type of fluid flow (i.e. laminar or 
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turbulent), condition of the walls (e.g. adiabatic or non-adiabatic) etc. This velocity 
gradient gives rise to shear stresses ultimately resulting in frictional pressure drop.  
 
The Darcy-Weisbach equation is one of the most commonly used equations for 
estimating frictional pressure drops in internal flows. This equation is given by: 
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where f is the dimensionless friction factor,  L is the length of the pipe/duct and D is 
the diameter in case of a circular duct and hydraulic diameter in case of a noncircular 

duct. The friction factor is a function of Reynolds number, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ

ρ
=

VDReD  and the 

relative surface of the pipe or duct surface in contact with the fluid.  
 
For steady, fully developed, laminar, incompressible flows, the Darcy friction factor f 
(which is independent of surface roughness) is given by: 

DRe
64f =                                           (6.14) 

 
For turbulent flow, the friction factor can be evaluated using the empirical correlation 
suggested by Colebrook and White is used, the correlation is given by: 
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Where ks is the average roughness of inner pipe wall expressed in same units as the 
diameter D. Evaluation of f from the above equation requires iteration since f occurs 
on both the sides of it.  
 
ASHRAE suggests the following form for determination of friction factor, 
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If f1 determined from above equation equals or exceeds 0.018 then f is taken to be 
same as f1. If it is less than 0.018 then f is given by: 
 

1f = 0.85f  + 0.0028                                  (6.17) 
  
Another straightforward equation suggested by Haaland (1983) is as follows: 
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Evaluation of minor loss, Δpm:  
 
The process of converting static pressure into kinetic energy is quite efficient. 
However, the process of converting kinetic energy into pressure head involves losses. 
These losses, which occur in ducts because of bends, elbows, joints, valves etc. are 
called minor losses. This term could be a misnomer, since in many cases these are 
more significant than the losses due to friction. For almost all the cases, the minor 
losses are determined from experimental data. In turbulent flows, the loss is 
proportional to square of velocity. Hence these are expressed as:  

2
VK  

2

m
ρ

=Δp                           (6.19) 

 
Experimental values for the constant K are available for various valves, elbows, 
diffusers and nozzles and other fittings. These aspects will be discussed in a later 
chapter on distribution of air. 
 
 
Questions: 
 

1. Is the flow incompressible if the velocity field is given by 3 22 6V x i x yj tk= − + ? 
(Answer) 
 
2. Derive the expression of fully developed laminar flow velocity profile through a 
circular pipe using control volume approach. (Answer)  
 
3. A Static-pitot (Fig. Q3) is used to measure the flow of an inviscid fluid having a 
density of 1000 kg/m3 in a 100 mm diameter pipe. What is the flow rate through the 
duct assuming the flow to be steady and incompressible and mercury as the 
manometer fluid? (Solution)  
 

h0 = 50 mm

3

1

4
h

2

 
Fig. Q3. Figure of problem 3 

 
4. Calculate the pressure drop in 30 m of a rectangular duct of cross section 12.5 mm 
X 25 mm when saturated water at 600C flows at 5 cm/s? (Solution) Hint: Lundgrem 
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determined that for rectangular ducts with ratio of sides 0.5 the product of  
f.Re=62.19. 
 
5. A fluid is flowing though a pipeline having a diameter of 150 mm at 1 m/s. The 
pipe is 50 m long. Calculate the head loss due to friction? (Solution) (Density and 
viscosity of fluid are 850 kg/m3 and 0.08 kg/m.s respectively) 
 
6. A fluid flows from point 1 to 2 of a horizontal pipe having a diameter of 150 mm. 
The distance between the points is 100 m. The pressure at point 1 is 1 MPa and at 
point 2 is 0.9 MPa. What is the flow rate? (Solution) (Density and kinematic viscosity 
of fluid are 900 kg/m3 and 400 X 10-6 m2/s respectively) 
 
7. Three pipes of 0.5 m, 0.3 m and 0.4 m diameters and having lengths of 100 m, 60 
m and 80 m respectively are connected in series between two tanks whose difference 
in water levels is 10 m as shown in Fig. Q7. If the friction factor for all the pipes is 
equal to 0.05, calculate the flow rate through the pipes. (Solution) 

 

D = 0.5m

Q

1

2

0.4m

0.3m

10m

 
Fig. Q7. Figure of problem 7 
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Fig. Q8. Figure of problem 8 
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8. Two reservoirs 10 kms apart is connected by a pipeline which is 0.25 m in diameter 
in the first 4 kms, sloping at 5 m per km, and the remaining by a 0.15 m diameter 
sloping at 2 m per km as is shown in Fig. Q8. The levels of water above the pipe 
openings are 5 m and 3 m in the upper and lower reservoirs respectively. Taking f = 
0.03 for both pipes and neglecting contraction and exit losses at openings calculate the 
rate of discharge through the pipelines. (Solution) 
 
9. A 10 cm hose with 5 cm discharges water at 3 m3/min to the atmosphere as is 
shown in Fig. Q9. Assuming frictionless flow, calculate the force exerted on the 
flange bolts. (Solution) 
 

2 D2 = 5 cm
D1 = 10 cm

CV

1
patm

 
Fig. Q9. Figure of problem 9 
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