
 

MODULE 10 
 

MASS TRANSFER  
 
Mass transfer specifically refers to the relative motion of species in a mixture 
due to concentration gradients. In many technical applications, heat transfer 
processes occur simultaneously with mass transfer processes. The present 
module discusses these transfer mechanisms. Since the principles of mass 
transfer are very similar to those of heat transfer, the analogy between heat and 
mass transfer will be used throughout this module. 
 
10.1 Mass transfer through diffusion 
In Module 2 "Conduction", the Fourier equation was introduced, which relates 
the heat transfer to an existent temperature gradient: 
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For mass transfer, where a component A diffuses in a mixture with a component 
B an analogous relation for the rate of diffusion, based on the concentration 
gradient can be used 
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where ρ is the density of the gas mixture, DAB the diffusion coefficient and 

ρρξ /AA =  the mass concentration of component A. 
The sum of all diffusion fluxes must be zero, since the diffusion flow is, by 
definition, superimposed to the net mass transfer: 
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With 1=+ BA ξξ  we get 
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which yields  
 
DBA = DAB = D 
 



 

The analogy between diffusive heat transfer (heat conduction) and diffusive 
mass transfer (diffusion) can be illustrated by considering unsteady diffusive 
transfer through a layer. 
 
In heat conduction we can calculate the temperature field in a semi-infinite 
plate, whose surface temperature is forced to suddenly change to a constant 
value at t = 0. The derivation will be repeated here in summarized form. 
 
Heat conduction, unsteady, semi-infinite plate: 
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 Fig. 10.1: Unsteady heat 

conduction  
 
 
This partial differential equation can be transformed into an ordinary differential 
equation 
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Fig. 10.2 Temperature field 
 



 

 
The heat flux at the wall can be calculated from the temperature gradient. 
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The corresponding example in mass transfer is the diffusion of a gas 
component, which is brought in contact with another gas layer at time t=0. 
 
The transient field of concentration with pure diffusion results from a balance of 
component i 
 

 
   Fig. 10.3: Transient diffusion 
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The initial and boundary conditions for the semi-infinite fluid layer with a fixed 
concentration at the interface are: 
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The solution, i.e. the field of concentration, is analogue to the one above. 
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Fig. 10.4 Concentration field 

 
The diffusive mass flux of component i at the interface can be derived as 
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Fig. 10.5 Gas absorption in a falling film 

 
A practical example from chemical engineering is the absorption of a gas 
component i in a falling film. Considering a large film thickness or short contact 
times the theoretical results (penetration theory) can be used. 
The absorbed mass flux is 
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Finally, the contact time can be calculated from the film velocity and the film 
length: 
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10.2 Mass transfer in a flowing medium 
If we balance the net masses flowing in and out of a control volume of a fluid 
mixture, i.e. the sum of the convective and diffusive mass flows of the 
component i 
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we get for a steady state flow without sources the conservation equation for the 
component i under investigation: 
 
 
 

 
Fig. 10.6 Balance of mass flows on a control volume 
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This equation can be differentiated partially and rewritten applying the equation 
of continuity. This yields the form of the conservation equation for component i 
(the index i will be disregarded further on): 
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Assuming constant material properties and introducing the Schmidt number 

Dρ
μ

=Sc , we get the simplified form: 
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which in analogy to the energy equation of the Module 6 on convection, can be 
made dimensionless by introducing dimensionless parameters. In a physical 

sense, 
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we get the dimensionless equation of mass conservation 
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from which can be concluded that the scaled concentration field must depend on 
the dimensionless coordinates and the dimensionless numbers Re and Sc: 
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Note the analogy to heat transfer, where in Module 6 "Convection", for the 
temperature field, the following was valid: 
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10.3 Diffusive mass transfer on a surface 
The heat flux was determined in Module 6 "Convection" from the gradient of 
the temperature at the wall: 
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This heat flux was represented using an empirical equation for the heat transfer 
coefficient: 
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which written in dimensionless form was introduced as the Nusselt number Nu: 
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For many practical cases, the Nusselt laws are written in the form: 
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We will proceed accordingly to describe mass transfer. 
For the diffusive mass flow rate, Fick's Law is rewritten using dimensionless 
quantities: 
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and compared to an empirical equation using the mass transfer coefficient 
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By the comparison, we get the dimensionless mass transfer number, the 
Sherwood number Sh: 
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Sherwood number correlations, in turn, can be written using appropriate 
dimensionless numbers 
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Since the type of the mass conservation equation and energy equation are the 
same, the constants C and the exponents m and n of both relationships must be 
equal for comparable boundary conditions. 
 
It seems like we need one more dimensionless number to represent the relative 
magnitudes of heat and mass diffusion in the thermal and concentration 
boundary layers. That is the Lewis number, defined as  
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10.4 Analogy between heat and mass transfer 
Comparing the correlation for the heat and mass transfer, we can find their ratio 
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and hence 
  

1

Pr/

−

⎟
⎠
⎞

⎜
⎝
⎛=

n

p

mass Sc
ch

h
     (10.31) 

 
For gases, the Prandtl and the Schmidt number are almost equal. In this case a 
simple approximation for the relationship between the mass and heat transfer 
coefficient can be derived, which is the so-called Lewis relation 
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10.5 Evaporation on a liquid surface 
When vapour from the surface of the liquid A enters the surrounding gas 
mixture, consisting of the component A and B, then this process is called 
evaporation. This mass transfer is determined by diffusive processes, i.e. 
diffusive resistances. The process differs from that of vaporisation, since in the 
latter the transferred vapour component is transferred to a pure vapour 
environment. Diffusion resistances are not relevant for the process of 
vaporisation. 
 
The net mass flow of component A from the liquid surface to the gas consists of 
a convective and diffusive part 
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Fig. 10.7 Mass balance on a liquid surface 

 
 
Usually, it is assumed that the gas component B cannot penetrate the liquid 
surface, hence for the net flow of component B: 
 
 

BBdiffBconvBB jvmmm ′′+=′′+′′=′′ ρξ,, &&&     (10.34) 
 
With  and 0=′′+′′ BA jj 1=+ BA ξξ  we get the net evaporation flow on the surface 
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The net mass flow is obviously increased by the factor F, the Stefan factor, 
compared to the diffusion flow. This factor takes into account that the wall is 
only permeable for the evaporating component A ("semi-permeable wall"). 
 
If we express the diffusive flow by equation 10.27, by the mass transfer 
coefficient and the concentration difference, we get: 
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or in dimensionless form 
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with ξ  as the mass concentration of the transferred component and B the 
driving potential for the mass transfer. 
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